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Abstract. The Internet of Things (IoT) has brought evident security concerns.
New solutions in security for IoT will need to reduce the dependency on non-
volatile memory for key storage, promote easier means to uniquely identify bil-
lions of devices, etc. Physical Unclonable Functions (PUFs) have been adopted
as the future for key derivation and hardware fingerprinting. This work presents
CSHIA: a new computer architecture that takes into account limitations and
strengths of PUFs to provide code and data integrity and authenticity in a seam-
less design that does not demand changes in processors microarchitecture or
software. We describe and analyze a full-fledged FPGA deployment of the archi-
tecture and consider attack scenarios, including side-channel attacks on PUFs.

1. Introduction
As the Internet of Things (IoT) devices start to be popularized, their specifications, re-
quirements, and, mainly, security concerns and threats become evident. While lower
power consumption and area (i.e. cheap production cost) would be seen as the main
drivers of the industry, security has been pointed out as a necessity for IoT rather than an
option [ARM 2018]. To keep up with low costs and high viability, IoT security will need
to reduce the dependency on non-volatile memory for key storage, promote easier means
to uniquely identify billions (or perhaps trillions) of devices, guarantee authenticity and
integrity of data and software, and yet easily integrate solutions of third parties (from
hardware and software industries). Physical Unclonable Functions (PUFs) have emerged
as the future for key distribution and hardware fingerprinting. However, their incorpo-
ration as a security solution for IoT demands new hardware architectures that will deal
with PUFs’ unreliability, additional area overheads, and other concerns. Endeavouring to
facilitate the integration of PUFs to current hardware and software IPs, we present Com-
puter Security by Hardware-Intrinsic Authentication (CSHIA). CSHIA is a new secure
computer architecture that explores building blocks of computer architecture and the in-
tricacies of PUFs to provide code and data integrity and authenticity, eliminating on-chip
key storage, ensuring data origin, and making software tamper-evident.

Contributions: CSHIA’s architecture is built upon a two bus organization [Shao et al.
2008]. One bus for main memory (as usual) and another for a tag memory. These tags
are generated by pseudo-random functions using PUF-based keys and memory blocks.



Due to the intrinsic dependence of PUFs’ behavior on fabrication process variations, each
PUF-based tag (PTAG) is unique among different CSHIA instances, hence data cannot
be moved from one device instance to another. An on-the-fly mechanism ensures that
deviation between memory block content and its PTAGs are detectable. With the dual bus
architecture, designers and engineers can deploy different bus technologies for the main
memory and the PTAG memory. As a result, they can use different clock frequencies, ar-
bitraging policies, word sizes, etc., to reduce verification overheads. In addition, because
the processor is not aware of CSHIA, instructions and other modifications are not needed,
resulting on 100 % software compatibility. Another aspect of CSHIA’s flexibility is the
possibility of using different countermeasures against replay attack. In a replay attack,
an adversary restores previous values of authentic and non-tampered data, affecting the
current state of systems, which enables attackers to tamper with registered consumption
of smart meters, redo commands of smart switches, among others forgeries. In CSHIA,
designers and engineers can opt between Timestamps or Merkle Tree without having to
redesign any aspect of CSHIA’s mechanism of code and data authentication and integrity
verification.

Regarding PUFs, CSHIA presents a new way of extracting keys from SRAM-
PUFs using the processor’s cache – thus mitigating the need of additional circuitry. Fi-
nally, we implemented and tested a full-fledged FPGA deployment of the architecture
using as baseline a well-known processor, and which has show limited overheads: aver-
age performance penalty between 2.76 % to 7.05 % (depending on the choice of coun-
termeasures); area increment between 29 % to 38 % for FPGA (disregarding additional
memory). At last, this work also delved into security evaluation of employing PUFs for
unique device identification. We examined template side-channel attacks in a PUF vari-
ant, called XOR Arbiter PUFs, and we show that it could be possible to unveil one’s
hardware fingerprint using the knowledge of another with accuracy of up to 80 %.

2. Background and Related Work

This section navigates the essential concepts of PUFs and modern secure computer archi-
tectures, and what threats against IoT devices they could help to mitigate.

2.1. Physical Unclonable Functions

A PUF is a physical system that behaves similarly to a surjective function in which an
input is a physical stimulus called challenge, and an output is called response. Although
physical systems can macroscopically behave indistinguishably, the physical elements
that constitute them are imperfect at some level (molecular level, atomic level, etc.). In
electronics, a family of devices, despite equivalent functionality, will not have one in-
stance microscopically equal to another, since the fabrication process is inexorably un-
even. Hence, electronic PUFs exploit this intrinsic inequality to uniquely generate pairs
of binary digital inputs (challenges) and outputs (responses).

As Challenge-Response Pairs (CRPs) of PUFs are distinctive for each physical
instance, they are a manifestation of entropy. Extracting this entropy allows one to create
singular root keys, which can be deployed in many cryptographic applications, including
to certify origin of data, even when it is produced by equal devices, thus providing au-
thenticity. In terms of leverages in system design, keys can be regenerated at any moment



by challenging PUFs, eliminating the need for non-volatile memory for key storage. This
can bring enormous advantages for chip design. For instance, in micro-controllers, the
absence of non-volatile memory has been reported to increase performance and reduce
production cost by enabling higher clock speeds and decreasing the number of masks
involved in the fabrication process [Mutschler 2020].

Nevertheless, due to the microscopic nature of the events from which informa-
tion is extracted, variations in PUF responses occur, making them inconsistent over time
and hindering key regeneration. Then again, this unreliability is remarkably contained,
allowing ingenious schemes to overcome it. Among the new reliability schemes that
were developed, Fuzzy Extractors (FEs) have been the most prominent. They use Error
Correcting Codes (ECCs) and/or cryptographic primitives to boost entropy and decrease
bias [Maes et al. 2016]. Simply put, FEs can be split into two procedures: enrollment and
regeneration (reconstruction). In enrollment, FEs use responses extracted from PUFs to
generate a key and an information-theoretically secure helper data. In regeneration, given
the helper data and an approximation of the original PUF responses – containing noise
due to inherent variations, FEs reconstruct the original key. With diligent design choices,
FEs allow PUFs to match the robustness and security demanded by the IoT.

2.2. Modern Secure Computer Architectures
The main goal of a secure computer architecture is to incorporate mechanisms of confi-
dentiality and integrity in hardware since such approaches “cannot be easily bypassed or
subverted as software” [Szefer and Martonosi 2018]. To face the challenges of security
in the IoT era, modern secure computer architectures should abandon non-volatile stor-
age for keys, which can comprise security not only by the fact that keys are permanently
stored, even in turned-off devices, but also because managing billions of keys is utterly
difficult. As a result, PUFs seem to be a good alternative. During the almost two decades
of PUF research, initiatives to construct secure computer architectures layered with PUFs
as key generators were presented. AEGIS [Suh et al. 2005] was the first PUF-based
architecture proposal and tackled many architectural and PUFs security concerns, provid-
ing a solid solution that gives confidentiality and integrity to code and data. However,
it introduces additional instructions and modifications in operating system, hampering its
adoption in low cost devices. Recently, SEPUFSoC [Sepúlveda et al. 2019] was proposed
to provide code/data integrity and authenticity for multi-system-on-chip architecture. In-
terestingly, SEPUFSoC relies heavily on CSHIA’s security design [Hoffman et al. 2015]:
deployment of integrity tags for memory blocks which are generated from PUF-based
keys applied to a pseudo-random function (PRF); verification of manipulation of helper
data. Yet, in this work, we touch far deeper questions like the reuse of available circuitry
in chips as PUFs and key extraction with measured reliability. All that without relegating
essential matters of computer design such as area and performance overheads.

2.3. Common Threats and Threat Model
A threat model for IoT has to incorporate physical access to devices by adversaries. De-
vices will mostly run autonomous and unsupervised, and attackers will be able to explore
vulnerabilities in the field or maybe move devices to places of their convenience. But, as-
suming that adversaries can decapsulate chips and use high-end tools like lasers, photonic
emission detectors, among others, would not be realistic, since that involves slow proce-
dures, years of expertise, and expensive equipment. It does not mean it cannot happen,



but rather it is unlikely to. Thus, we assume that at least the main chip of the architecture
cannot be attacked invasively. From the point of the view of computer architecture, at-
tacks include instruction and data manipulation and modification of peripheral hardware.
These are translated into attacks to IoT devices like tampering with data integrity (e.g.
manipulation of current measurements), tampering with data authenticity (e.g. moving
data from one device to another), and tampering with code behavior (e.g. malware inser-
tion). Finally, there is a gray area in the model regarding side-channel attacks because
equipment is not highly expensive, skills are widely taught, and they do not need to be
invasive. Countermeasures can be employed, albeit guarantees mostly depend on imple-
mentation as they are not standardized and different hardwares leak different information.
Now, given the scenarios and challenges discussed here, we present CSHIA next.

3. CSHIA

As previously discussed, even under physical attacks, IoT devices need mechanisms to
ensure that modifications in data and software are tamper-evident. CSHIA is an computer
architecture that creates integrity tags for each memory block in main memory, guaran-
teeing detection of unwanted changes in code and data on runtime. Nonetheless, that
would not be enough, because attackers can replace uncorrupted data and software be-
tween different versions and instance of IoT devices. To avoid it, CSHIA authenticates
each tag with a PUF-based key. Hence, even if an adversary swaps uncorrupted memory
blocks and their tags between equal devices, CSHIA can detect it, providing authenticity
to code and data. What is more, a secure computer architecture cannot add prohibitive
performance penalties and area overhead, in that CSHIA proposes (a) separated buses for
main memory and the memory of PUF-based tags (PTAGs) and (b) reuse of processor’s
cache memories as SRAM-PUFs. As a result, designers and engineers can adopt differ-
ent parameters, technologies, and versions of buses to match performance requirements.
Due to PUFs rely on microscopic differences to generate randomness and uniqueness,
their design – mainly in ASIC – demand great expertise to avert highly biased and low
entropy implementations. However, SRAM start-up presents PUF behavior and given its
naturally demonstrated randomness and reliability [Wang et al. 2020], besides being a
very well-known standard in the industry, they can save additional area when available in
systems. In CSHIA, we designed and analyzed an algorithm to extract stable and reliable
keys from SRAM-PUFs, and we proposed it to be used in processor’s cache.

The overview of the architecture of CSHIA can be seen in Figure 1. CSHIA has
three main components: Bus Handler (BUS-HDLR), Security Engine (SEC-ENG), and
the PTAG Memory (PTAG-MEM). PTAG-MEM is filled up with PTAGs computed from
the initial values of the memory blocks during a secure enrollment procedure. Manufac-
turers and/or trust vendors should do it during production. Posteriorly, when is CSHIA
functional, BUS-HDLR monitors processor requests and captures addresses and memory
blocks that are handed in to SEC-ENG (A). In its turn, SEC-ENG consults PTAG-MEM
through its memory management unit, PMMU, (B). Meanwhile, the PTAG generator
(PTAG-GEN) uses the memory block and its address received from BUS-HDLR to re-
compute a PTAG and send it for comparison (C). The PTAG from PTAG-MEM is also
sent to comparison (D). If it fails, BUS-HDLR inhibits altered code and data to reach the
processor (E). When the core wants to write a cache line back to main memory, BUS-
HDLR will hand in captured input to SEC-ENG (A). But, this time, SEC-ENG uses the
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Figure 1. Architecture of CSHIA.

PTAG-GEN to generate an up-to-date PTAG that is passed to PMMU (F) and which writes
it into PTAG-MEM (B). This process is transparent for the processor, main memory, and
other peripherals of traditional computing systems. The Fuzzy Extractor is only activated
during enrollment and restart of the system. It extracts a PUF-based key and delivers it to
PTAG-GEN (G). The extraction can be done as proposed, using the processor’s cache, or
using any other PUFs. PMMU can provide information to PTAG-GEN (H) when coun-
termeasures against replay attacks are deployed. With Timestamps, it would be the time
of each PTAG last update. With Merkle Tree, PMMU would need to provide blocks of
PTAGs to update ascendant PTAGs in the tree. Because this process is complex and can
take multiple iterations, a PTAG cache memory should be used for better performance.

4. Implementation and Results
A proof-of-concept implementation of CSHIA was realized over the open-source code of
Gaisler’s Leon3 processor. The implementation used the Terasic DE2-115 Board that has
an Altera’s FPGA. Between conceptual design and implementation a major trouble had
to be addressed: In this particular FPGA, SRAM memories are always initialized to zero.
Despite having an external SRAM in the DE2-115 board, we decided not to use it, since,
among many downsides, the SRAM could not be turned on and off independently from
the rest of the board: essential feature to implement our algorithm of key extraction from
processor’s caches. Consequently, we opted to use a FPGA implementation of Arbiter
PUFs (APUFs) for key extraction. The major impact of such a limitation was that com-
paring practical and analytical results of the algorithm was not possible. In the analytical
experiments, using data from SRAMs of multiple boards, we emulated key extraction –
as CSHIA would do – that consisted in locating stable words among multiple startups of
cache memories. Combinations of those words enabled random keys whose probability
of failure would be 1 in 1,000,000 regenerations, besides having small helper data.

Regarding architecture, BUS-HDLR was implemented over the AMBA Bus be-
tween Leon3’s core and main memory. We use FPGA internal memories for PTAG-MEM
and the additional memories of the replay attack countermeasures. Regarding security, we
used SipHash as CSHIA’s PRF, which requires a 128-bit key and produces 64-bit hashes.
Thus, in terms of brute-force efforts, our keys would require 2128 guesses and PTAGs
would demand 264 attempts to forger them. As a result, considering the birthday prob-
lem, CSHIA’s replay attack countermeasures can be effective for distinctive collections
under 232 PTAGs. In other words, if an attacker observes a singular memory block and
collects 232 different values of that memory block, he/she has 50 % of chance to find, in
such a collection, two equal PTAGs, making viable a replay attack, but in that specific



Table 1. Performance overhead in % of the seven CSHIA instances evaluated in
comparison to running times in Leon3 Baseline.

CSHIA-MT instances
CSHIA-TS 16x8-LRU 32x4-LRU 64x2-LRU 16x8-ALAP 32x4-ALAP 64x2-ALAP

Average 2.76 5.99 6.12 5.77 7.05 6.03 5.99

memory block only. In Appendix D of the Thesis [Hoffman 2019], we apply some ex-
amples of replay attack in our CSHIA’s FPGA implementation and we demonstrate how
each countermeasure, Timestamp or Merkle Tree, thwart those attacks.

For performance evaluation, we chose some benchmarks of Mibench:
basicmath, bitcount, dijkstra, fft, qsort, sha, string search, and
susan. Table 1 shows the average performance overhead computed from benchmark
runs in multiple configurations of CSHIA. CSHIA-TS is when Timestamps are used to
deal with replay attacks and CSHIA-MT represents the use of Merkle Tree. A 4-KB cache
memory under different combinations (lines versus sets: 64x2, 32x4, 16x8) and policies
(LRU and ALAP) was used to store PTAGs and speed up Merkle Tree integrity verifica-
tion. Disregarding additional memories that each countermeasure imposes, the propor-
tional area overhead of logic elements is 29 % for CSHIA-TS and 38 % for CSHIA-MT.
Later, after the finalization of the thesis, we synthesized CSHIA using Cadence synthesis
tool and those overheads were reduced to a maximum of 21 % (without memories).

Notwithstanding, CSHIA overheads are comparable (or better) to those in the lit-
erature. For instance, SEPUFSoC presents an area increment of at least 33 % (in FPGA)
and AEGIS of 90 %. In terms of worst-performing benchmark, SEPUFSoC reaches 25.4
% degradation and AEGIS 73.1 %. Our instance of CSHIA-MT 16x8-ALAP is the one
with the worst performance with 24.85 % degradation running sha. Notice that our over-
heads of area include the APUFs and their additional controllers. They would be smaller
if we could use SRAM-PUF as solution. As performance and area can be improved by
optimizing the implementation, one should look to these results as worst-case scenarios
for the particular benchmarks and configurations. It is worth to notice that, to be secure,
Merkle Tree and Timestamps solutions require on-chip non-volatile memory. Although
non-volatile storage of keys is insecure, access to metadata of replay attack countermea-
sure is noncritical, as long as attackers cannot write in such memories. Regarding over-
heads, while we only need to store the tree root of Merkle Tree, for Timestamps, we need
to store the latest time-counter value of each PTAG. Despite that, CSHIA-TS had better
performance and smaller additional logic than CSHIA-MT. Choosing between these solu-
tions will be up to the designers/engineers, but CSHIA’s features facilitate it by avoiding
changes in the integrity mechanism, PUFs, FE, software, and peripherals, regardless of
which option is picked. An easier path to widespread adoption of more security in IoT.

5. Security Evaluation
As aforementioned, one of the key features obtained from using PUFs in IoT is the as-
signment of unique identity to each device. These identities could originate from the fact
that memory content of one device cannot be moved to another, or that the entire set of
integrity tags of memory blocks define a particular instance of a device. Both ways could
be seem as forms in which CSHIA deliveries identity. In the case of a successful attack
in CSHIA, it would indicate that an adversary guessed the PUF-based key or was able



to create PTAGs that match his/her tampered code/data. Such tampered memory blocks,
however, could not be moved to other device unless the attacker can figure out again the
device key or can luckily guess the PTAGs accepted by it. Still, one hypothetical attacking
scenario remains. What if adversaries could learn information of one device and use it to
gain knowledge of the hidden information of other devices? In particular, could attackers
unveil a device’s key using one originated from another instance of that device.

As machine learning (ML) is all about using previous knowledge to predict un-
known information, one could imagine that it would be the answer of the previous ques-
tion. But, many works in the literature have applied ML to PUFs [Rührmair et al. 2010]
and none have shown or indicated that such an approach would work. Given that and the
fact that side-channel attacks can be a real threat to IoT devices, we decided to mount a
variant of them, called Template Attack. It uses a template created by collecting power
traces of responses of a profiled PUF to try to obtain unknown responses of a different
instance of that PUF. If an attack like this works, it would indicate a possible way in which
an attacker could circumvent the uniqueness that PUFs stablish.

For this experiment, we implemented one XOR Arbiter PUF (XOR-APUF) in two
equal FPGAs. A XOR-APUF combines responses of multiple APUFs using a XOR logic
function to generate responses. We used one FPGA to create a template of power traces
of a randomly-picked CRP set, and we attacked the other FPGA, aiming at unveiling PUF
responses of a different randomly-picked CRP set. As a matter of fact, choosing differ-
ent and random CRP between template creation and attack gives a more realistic scenario.
Among multiple configurations of attacks, we were able to reach 80 % of accuracy. Mean-
ing that if an attacker creates a template of responses of each individual XOR-APUF in
one device, it would be possible, with 80 % of probability, to correctly guess individual
XOR-APUF responses in a different instance of that device1. Despite the fact that the
experiments were conducted in the controlled environment of a laboratory, they show at-
tack viability, and considering that our threat model acknowledges side-channel attacks,
concrete situations where they can occur should not be overlooked.

6. Conclusion

Security for IoT devices will not be solely achieved by software measures and traditional
computer architecture. To face the challenges we shed light on, the incorporation of PUFs
into secure architecture designs seems to be the best available approach. However, this
also brings new security challenges to deal with. For this reason, in this work, we pre-
sented CSHIA, a secure computer architecture that provides authenticity and integrity to
code/data by means of PUFs. CSHIA innovates in tackling PUF unreliability and over-
heads together with flexible design that aims at mitigating performance and area overhead,
which are inherently common in secure computer architectures. Resulting overheads are
comparable (and sometimes better) than current options presented in the literature. Be-
sides all that, we also delved into performing attacks in CSHIA and PUFs. In particular,
we showed how one could circumvent the unique keys that can be derived from PUFs in a
side-channel attack. Yet, such attack needs to be proved viable in the field. Thus, overall,
CSHIA is a robust solution that addresses many threats that IoT devices will be facing.

1The accuracy of the attack reached 82 % when the profiled and attacked PUF instance was the same.
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