
zkPAKE: A Simple Augmented PAKE Protocol

Karina Mochetti1 , Amanda C. Davi Resende1 , Diego F. Aranha1∗

1 Institute of Computing (UNICAMP)
Av. Albert Einstein, 1251, 13083-852, Campinas-SP, Brazil

{mochetti,dfaranha}@ic.unicamp.br,amanda@lasca.ic.unicamp.br

Abstract. Human memory is notoriously unreliable in memorizing long secrets,
such as large cryptographic keys. Password-based Authenticated Key Exchange
(PAKE) protocols securely establish a cryptographic key based only on the
knowledge of a much shorter password. In this work, an augmented PAKE pro-
tocol is designed and proposed for secure banking applications, requiring the
server to store only the image of the password under a one-way function. The
protocol is more efficient than alternatives because it requires fewer public key
operations or a lower communication overhead.

1. Introduction

Cryptographic keys for encryption and signature schemes must be generated randomly
and can have from a few hundred bits to many thousand bits. Since human memory
can hardly memorize such amount of unstructured data, keys are often stored in external
devices. However, this is not always possible and a secure communication key must be
established using a smaller and simpler password, that the user is able to remember.

A Password-Authenticated Key Exchange (PAKE) protocol is a method for es-
tablishing secure cryptographic keys based only on the knowledge of a simple password,
short enough to be easily memorized by humans [Boyd and Mathuria 2003]. In most
PAKE protocols, the server and the client share only the knowledge of the password in
some form and use it to negotiate a shared key in an authenticated way.

The first PAKE protocol [Lomas et al. 1989] was developed under the additional
assumption that the client has knowledge of the server public key, alongside the shared
password. Other protocols have been developed over the years, but the main limitation in
practice nowadays is that the more mature protocols are patented.

In this work, we reassure the importance of PAKE protocols in secure banking
applications, with emphasis to augmented PAKE protocols, and propose an augmented
PAKE protocol constructed from zero-knowledge proofs.

2. Background and Related Work

The main goal of a PAKE protocol is to establish a cryptographic key between a client and
a server, based only on their knowledge of a password, without relying on a Public Key
Infrastructure (PKI), which is complex and subject to man-in-the-middle attacks. The
most efficient and commonly used PAKE protocols are EKE [Bellovin and Merritt 1992]
and SPEKE [Jablon 1996], constructed from the basic Diffie-Hellman protocol. The main
difference in their construction is that the SPEKE protocol uses the password as the group
generator, while the EKE protocol uses it only as an auxiliary encryption key.

∗Supported by Intel in the scope of the project “Physical Unclonable Functions for SoC Devices”.

A secure PAKE protocol must fulfill four basic security requirements
[Hao and Ryan 2010]: it must be resistant to both offline and online dictionary attacks,
provide forward security and known-session security. Dictionary attacks consist of an ex-
haustive search of the password based on a list of words which are guessed as most likely
to succeed. An online attack tries several inputs against a legitimate protocol, while an
offline attack attempts to emulate the protocol using several known outputs. Therefore,
a PAKE protocol implementation cannot leak any information that allows an attacker to
learn the password through an exhaustive search.

A protocol is forward secure if it ensures that session keys remain secure even if
the password is disclosed. This property implies that if an attacker knows the password
but only passively observes the key exchange, he cannot derive the session key. Finally,
in a known-session secure protocol, a compromised session should not harm the security
of any other sessions, i.e., an attacker may have all information specific to the session, but
this must not affect the security of other established sessions.

An extra security requirement can be resistance against server compromise. To
accomplish this, the protocol must assure that an attacker cannot impersonate a user even
if the credential files are stolen. PAKE protocols with this feature are called augmented
PAKEs [Perlman and Kaufman 1999], as opposed to balanced PAKEs [Jablon 1996].

In an augmented PAKE the server does not know or store a plaintext password,
but an image of the client’s password under a one-way function. Augmented PAKE pro-
tocols are usually more complex and computationally expensive than balanced PAKEs.
For some applications, this feature is not useful and the additional complexity and com-
putational costs are not worthy. Such applications use secure balanced PAKE protocols,
such as EKE and SPEKE, but without resistance against server compromise. For other
applications, such as secure banking though, resisting server compromises can be critical,
even with some performance penalty.

Secure banking typically employs cryptographic protocols to provide secure com-
munication between two parties, such as Transport Layer Security (TLS) and Secure
Sockets Layer (SSL). Although popular, these protocols are subject to man-in-the-middle
attacks [Anderson 2001] and are sensible to user flaws; most users click through certifi-
cate warnings and ignore browser security indicators [Engler et al. 2009].

In this scenario, the client already knows a small and simple password to be able
to perform transactions in the server maintained by the bank. If this password is stored as
plaintext in the server, any malicious employee may successfully impersonate the client
in a balanced PAKE protocol. Therefore, for this kind of application, resistance against
server compromise is important, preventing an insider from impersonating the client.
Note that not all bank employees may have control over clients accounts to perform trans-
actions, specially the ones involved in maintaining the computer infrastructure.

To solve this problem we design an augmented PAKE. In this case, the user will
have to register his/her password with the bank upon opening an account. This will be per-
formed in the enrollment phase, in which the bank will receive and store an image of the
password. Now, a malicious employee does not have knowledge of the plaintext password
and cannot impersonate the user on the authentication phase of a PAKE protocol.

3. Our Protocol
In this Section we describe our contribution, the zkPAKE protocol, presented in Figure 1.
zkPAKE is an augmented PAKE protocol, based on zero-knowledge proof of knowledge
(ZKPK), a feature shared with some authentication protocols.

Server Client
Shared Information: g: generator of group G, gr

n←$Zq , N = gn N r = H1(pwd)

v ←$Zq

t = Nv

c = H1(g, g
r, t, N)

u = v −H1(c)r mod q

t′ = gungrnH1(c) u,H1(c) skc = H2(c)

c′ = H1(g, g
r, t′, N)

H1(c
′)

?
= H1(c)

sks = H2(c
′) H1(sks) H1(sks)

?
= H1(skc)

Figure 1. zkPAKE Protocol.

An enrollment phase must be held before the main zkPAKE protocol execution.
This phase is performed in a physically secure way between the client and the server,
such as an user registering his/her password in person within the bank. A shared secret
is then generated based on the password pwd and the generator g of group G. The client
computes the secret gr, with r being a hash of the password pwd and sends it privately
to the server. Note that, instead of storing and using the password directly, the server
will use the image of the password in the authentication phase, satisfying the augmented
PAKE definition. The enrollment phase needs to be executed only once for each client.

The next phase consists in the authentication steps of the basic PAKE protocol.
The server begins the transmission sending a nonce N . The client is able to calculate gr

and generate a secret key skc = H2(c) using a technique similar to a protocol for zero-
knowledge proof of possession [Chaum et al. 1987]. After u and H1(c) are returned, the
server can generate and prove knowledge of a secret key sks = H2(c

′). Note that in our
construction the authentication is done by both sides, thus the protocol inherently provides
mutual authentication.

4. Results
Table 1 presents a performance analysis of our protocol, comparing it with the main PAKE
protocols proposed in the literature. The number of exponentiations on client or server
side are computed for each protocol, considering the usual optimizations for implement-
ing exponentiations depending on the base. For simplicity, symmetric encryption, hash
function and other cheap operations are not taken into account. Powering an unknown
basis has a unitary cost (1.0), while fixed-base exponentiation costs half as much (0.5).
Double exponentiation can be implemented by interleaving to save squarings, costing a
unity and half (1.5). All protocols can be instantiated using elliptic curve groups, enjoy-
ing these optimizations [Hankerson et al. 2003]. The computation and communication
savings of zkPAKE compared to alternatives become clear.

Protocol Type Exp (Client) Exp (Server) Exp (Total) Messages
EKE balanced 1.5 1.5 3 4

SPEKE balanced 2 1.5 3.5 3
J-PAKE balanced 4 4 8 4
A-EKE augmented 1.5 1.5 3 5

B-SPEKE augmented 3 3 6 3
SRP augmented 2.5 2 4.5 4

zkPAKE augmented 1.5 1.5 3 3

Table 1. Performance comparison among PAKE protocols, by number of mes-
sages and exponentiations computed by server/client. Powering an unknown
base costs 1.0, a fixed base costs 0.5, and double exponentiation costs 1.5.

5. Conclusion
In this work we reviewed PAKE protocols, a method to establish secure cryptographic
keys based only on the knowledge of a simpler password, focusing on augmented PAKEs.
We proposed an augmented PAKE protocol that improves the performance of the proto-
cols found in the literature, either in computation or communication costs. A formal
security analysis is under way.

References
Anderson, R. J. (2001). Security Engineering: A Guide to Building Dependable Dis-

tributed Systems. John Wiley & Sons, Inc., New York, NY, USA, 1st edition.

Bellovin, S. M. and Merritt, M. (1992). Encrypted Key Exchange: Password-based Pro-
tocols Secure Against Dictionary Attacks. In IEEE Computer Society Symposium on
Research in Security and Privacy, Oakland, CA, USA, pages 72–84.

Boyd, C. and Mathuria, A. (2003). Protocols for Authentication and Key Establishment.
Information Security and Cryptography. Springer.

Chaum, D., Evertse, J., and van de Graaf, J. (1987). An Improved Protocol for Demon-
strating Possession of Discrete Logarithms and Some Generalizations. In Advances in
Cryptology (EUROCRYPT), Amsterdam, The Netherlands, pages 127–141.

Engler, J., Karlof, C., Shi, E., and Song, D. (2009). Is it too late for PAKE? In Web 2.0
Security and Privacy Workshop (W2SP).

Hankerson, D., Menezes, A. J., and Vanstone, S. (2003). Guide to Elliptic Curve Cryp-
tography. Springer-Verlag, Secaucus, NJ, USA.

Hao, F. and Ryan, P. (2010). J-PAKE: Authenticated Key Exchange without PKI. Trans-
actions on Computational Science, 11:192–206.

Jablon, D. P. (1996). Strong Password-only Authenticated Key Exchange. Computer
Communication Review, 26(5):5–26.

Lomas, T. M. A., Gong, L., Saltzer, J. H., and Needham, R. M. (1989). Reducing Risks
from Poorly Chosen Keys. In 12th ACM SOSP, pages 14–18.

Perlman, R. J. and Kaufman, C. (1999). Secure Password-Based Protocol for Download-
ing a Private Key. In Network and Distributed System Security Symposium (NDSS).

