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Abstract. Developing secure implementations of cryptography, in particular
those protected against side-channel attacks, is a challenging research and en-
gineering problem. In the case of timing attacks, the task can be facilitated by
employing verification tools to check constant-time behavior. Given this con-
cern, this work explores different verification tools and their distinct forms of
analysis with application to verifying cryptographic libraries. A simple syn-
tax for describing implementations was designed and a benchmarking database
was constructed to validate such tools, indicating that the combination of static
and dynamic analysis is required to fully verify the timing behavior of a crypto-
graphic implementation.

Resumo. Desenvolver implementações seguras de criptografia, em particu-
lar protegidas contra ataques de canal lateral, é um problema desafiador de
pesquisa e engenharia. No caso de ataques de temporização, a tarefa pode ser
facilitada ao se empregar ferramentas de verificação para determinar execução
em tempo constante. Dado esse problema, este trabalho expora diferentes ferra-
mentas de verificação e suas formas distintas de análise, com aplicação em bib-
liotecas criptográficas. Uma sintaxe simples para descrever as implementações
foi projetada e uma base de implementações foi construı́da para comparar e
validar tais ferramentas, indicando que uma combinação de análise dinâmica
e estática é requisito para verificar completamente o comportamento de uma
implementação criptográfica do ponto de vista de tempo de execução.

1. Introduction

With a high demand for computational systems to store, transfer and process sensitive
data, the Information Security community is responsible for designing and deploying
methods that must remain secure even when widely used. The application of crypto-
graphic techniques is a common approach to protect part of the attack surface of modern
systems, but naturally even cryptography may suffer from flaws and vulnerabilities. Given
this goal, there is a substantial amount of research dedicated to explore different ways to
attack such systems, retrieve sensitive data and expose cryptographic keys.

Side-channel attacks became popular after their success in retrieving secret in-
formation protected by a cryptosystem, using methods that attack implementations of
algorithms instead of tackling the more challenging underlying hardness assumptions
such as integer factoring, discrete logarithm computation or exhaustive search in the key
space [Kocher 1996]. There are many types of side-channel attacks, involving execution
time, branch prediction rate, power consumption and acoustic emanations. The attacks
can be passive and rely on monitoring of side-channel information only, or more invasive



and require injection of faults in the processing hardware. Passive attacks that work re-
motely against connected devices are among the most convenient for an attacker to mount.

In the past years, many timing attacks against cryptographic implementations
came up in the literature, compromising entire cryptosystems and exposing sensitive data
by using timing characteristics leaked by an insecure implementation [Bernstein 2004,
Percival 2005, Aciiçmez et al. 2007]. Those attacks consist in measuring the execu-
tion/response time of an insecure implementation, which will be different for distinct
inputs and may be correlated with secret information. Critical variances in execution time
can be caused by careless programming practices, but also by more subtle cache-timing
behavior, branch prediction/resolution effects and variable-time instructions within the
processor microarchitecture. If a system is secure against timing attacks, it is called con-
stant time because it produces the answer with the same latency independently of the
inputs. On the other hand, if the running time is not constant, meaning that different
inputs yield different running times, this system is called time-variant and may pose a
vulnerability that can be exploited by a remote attacker.

Timing attacks can be extremely complex to exploit and require the combination
of sophisticated techniques and observation of network traffic, as discussed above, but
they can also be very simple. For example, suppose an algorithm that checks if a given
string matches a certain secret password or its hash value, as shown below in Listing 1. It
can be easily implemented by comparing each character from both strings and stopping
the comparison immediately if a difference is found, or returning that the password is
correct contrariwise. Now, given this specific implementation, consider an attack in which
the opponent sends a random word, but with the first letter being s and measures the
response time. If the first letter of the password is in fact s, then the execution time
would be greater than the case in which the first letter was wrong, since the code will
try to match the second letter. Now the attacker has a simple way to check each letter
separately, reducing the complexity of the brute force attack from exponential to linear.

1 /*If pw == in returns 1, else returns 0 */
2 int compVar (char *pw, char *in, int len) {
3 for (int i = 0; i < len; i++) {
4 if (pw[i] != in[i]) {
5 return 0;
6 }
7 }
8 return 1;
9 }

10

11 int main(void) {
12 int result, comp=1;
13 char pw[] = "secret", in[7];
14 scanf ("%s", in);
15 result = compVar(pw, in);
16 printf ("%d", result);
17 }

Listing 1. Example of a time variant implementation of string comparison.



A constant-time version of the same string comparison function with the same
interface can be found below in Listing 2.

1 /*If pw == in returns 1, else returns 0 */
2 int compConst (char *pw, char *in, int len) {
3 int r = 0;
4 for (int i = 0; i < len; i++) {
5 r |= (pw[i] ˆ in[i]);
6 }
7 return (r == 0);
8 }

Listing 2. Example of a constant time implementation of string comparison.

Although constant time implementations appear to solve all the timing attack vul-
nerabilities, there are a few more steps that need to be taken in order to assure such pro-
tection. First the programmer must check if the high-level code executes in constant time
across all code paths, possibly with the help of static analysis. Even though static anal-
ysis tools may check the code and rate it as secure, the programmer still must use other
tools to verify dynamic behavior. The usage of both methods is required because in the
transition from source code (i.e. C/C++ source file) to a final executable there are many
processing steps performed by the compiler, which can generate a final version with side-
channel protection disabled during the optimization or containing insecure variable-time
instructions inserted during code generation.

This work presents two main contributions. The first one is CTBench, a large
database containing several implementations of cryptographic functions, ready to be
tested by any static or dynamic analysis tools. We evaluated the tools FlowTracker, dudect
and ctgrind in terms of accuracy when analyzing if the implementations are constant time
or time-variant. Another contribution was the design of a XML file format useful to an-
notate critical information in cryptographic code for static analysis.

This paper is organized as follows. Section 2 discusses the two analysis tech-
niques, as well as a few examples of tools that are available in the research literature.
Section 3 presents the representation format and how the benchmarking database is orga-
nized. Section 4 discusses the results obtained by the tools. Section 5 concludes the paper
and discusses future work.

2. Related work
Previous attacks against implementations of AES were able to recover the full key almost
in real time just by observing encryption of a few KBs of data [Gullasch et al. 2011], or
by analyzing network response time [Bernstein 2004]. Others were able to recover Diffie-
Hellman exponents in naive implementations of the square-and-multiply exponentiation
operation [Kocher 1996] and even factor RSA keys [Schindler 2000] by measuring pre-
cisely the time required to perform some operations like encryption and multiplications,
sometimes remotely [Brumley and Boneh 2005].

A more specific class of timing attacks is called cache-based attacks, which uses
leakage from hits and misses in cache memory to extract information about a secret
parameter (i.e. cryptographic keys or plaintext data). Cache memory provides faster



memory access to the processor for small amounts of data which are frequently used,
reducing the delay to retrieve these values from the main memory. Since cache mem-
ory typically only has up to 128 KBs of capacity in its fastest L1 level, sometimes
a process may not find a memory address loaded on it, and therefore the processor
must retrieve the data from slower cache levels or the main memory, yielding a cache
miss and consequently a delay. The attack can also work across different processing
cores if there is a shared cache level. Measuring this kind of delay during the en-
cryption or decryption of a given implementation can allow the attacker to infer prop-
erties of the key being used. This type of attack works against insecure implemen-
tations of AES, as shown by [Bernstein 2004, Percival 2005]; and the RSA cryptosys-
tem [Yarom and Falkner 2014, Yarom et al. 2017].

There are several works in the literature that detected and exploited implemen-
tations of cryptographic algorithms using variable-time instructions or compiler in-
terference. For example, integer multiplication instructions in ARM processors that
finish early when the precision of the operands is low can be explored in side-
channel attacks [Großschädl et al. 2009]. Another work targeting this approach is
[Kaufmann et al. 2016], which studied attacks against the Curve25519 key exchange pro-
tocol by analyzing the 32-bit compiled version of an otherwise 64-bit secure implementa-
tion. This happened due to the Windows runtime library which added an insecure branch
in order to optimize long integer multiplication. There are some microbenchmarks specifi-
cally created for different architectures to clarify programmers which instructions are safe
and, more importantly, which are not secure and should be avoided or used with some ad-
ditional precautions [Pornin 2017].

Given the power of timing attacks in the literature and practice of cryptography,
the importance of studying how to prevent vulnerabilities and verify the security of cryp-
tographic implementations in terms of side-channel resistance is clear. Many approaches
tried to prevent such vulnerabilities by creating tools to be used by the programmer to
improve the code for critical applications. The main types of analysis employed by these
tools are dynamic and static, with their own features and limitations, as discussed in detail
on the sections below.

2.1. Dynamic Analysis

A first method to detect if an implementation leaks timing information is to analyze its
behavior while executing given some input. This kind of method is called dynamic since
it relies on an experiment using the compiled version of the code during execution, and
not just the source code itself.

A recently proposed tool called dudect [Reparaz et al. 2017] was created using
the concept. It tests an implementation against several inputs, trying to find a different
behaviour that yields a variant running time. In order to detect such behaviour, it uses
some statistical tests, such as the Welch’s t-test for detecting variations in the collected
samples. An advantage of dynamic analysis is detecting low-level timing variances in-
troduced by the instructions themselves, such as early-abort multipliers available in the
ARM architecture[Großschädl et al. 2009]; or by the compiler through insecure runtime
libraries [Kaufmann et al. 2016].

Another tool for this kind of analysis is ctgrind [Langley 2010], based on the pop-



ular Valgrind tool [Nethercote and Seward 2007] for memory management and leakage
analysis. The ctgrind tool changes the behavior of Valgrind to check if secret data was
accessed and then concludes that a branch instruction depends on secret information, ul-
timately marking the implementation as insecure. The modified behaviour can be used
through special functions provided by ctgrind to treat secret parameters as uninitialized
data, triggering the warnings.

The main limitation of these tools is that they cannot check if a given implementa-
tion is in fact constant-time, because this would imply that every possible input was tested
and that the average execution time of every sample has the same value, which is impos-
sible given the number of possibilities. Furthermore, unlikely inputs carefully crafted by
an attacker to produce variable time behavior may not be explored in a small number of
samples. However, they can still provide some supporting evidence of timing behavior
and help the programmer fix his/her implementation.

Each tool has a different method to be used which can vary according to the func-
tions executed by the program. Both dynamic tools studied use a similar representation
process to test a given implementation. The dudect tool requires a C source file with a
function to generate the random input and calculate the execution time of a sample, and
a wrapper for each function the user wants to check. The user must just initialize any
required variables and use the randomly generated data as input. Another parameter that
can be changed is the number of samples taken, usually ranging from then thousand to
one million. The tool will output two possible results:

• For the moment, maybe constant time, which means that so far every sample taken
has a measurement very close to each other, so it cannot confirm that the function
is indeed variant or constant time.

• Probably not constant time, which means that the mean from two or more samples
have enough difference to indicate that the function is not constant-time.
The ctgrind tool requires a C source file containing the function to be tested and

the special initialization of the secret data. To compile the code, the user must also use
some special flags provided in the Makefile in order to be able to use the Valgrind software
to check the binary.

2.2. Static Analysis
Another type of analysis, known as static analysis, is widely applied to find vulnerabili-
ties involving sensitive variables used in a cryptosystem. This kind of analysis receives
the moniker static because it works based on an intermediate representation of the code,
instead of the execution of a compiled binary.

Static analysis tools can detect several types of problems within an implementation
without compiling and executing the software itself. To perform this kind of analysis the
user simply executes the tool using an auxiliary file containing information about the code
that he wants to check and the source file. The user will usually receive several warnings
describing how the secret information flows within the application. Some recent tools like
FlowTracker[Rodrigues et al. 2016] and ct-verif [Almeida et al. 2016] use techniques for
analyzing programs in intermediate representation languages.

The ct-verif tool requires the source file to be annotated using a special syntax and
converts a compiled program represented in the LLVM intermediate representation to a



special representation in the Boogie language which allows to extract provable guarantees
of constant-time behavior. This allows the user to detect branch instructions using secret
information as one of the parameters, therefore being vulnerable since the running time
will depend on those parameters. Unfortunately, the tool appears rather preliminary for
general use and under development, so it was not possible to benchmark it in this work.

FlowTracker [Rodrigues et al. 2016] is a static tool developed to detect and ana-
lyze the implicit flow of information within an implementation. It can be used to keep
track of sensitive input, such as cryptography keys, and determine if its value may have
some influence in the running time, for example by being the parameter for a branch
instruction or the index of a vector possibly stored in cache memory. The main limita-
tion of these tools is that it cannot check all dependencies from a given code, therefore
vulnerabilities will not be found if insecure functions or instructions are used.

FlowTracker has a distinct kind of input since it will not compile and execute the
code. As explained in Section 3 the input consists of an XML file with precise information
about the functions being tested. The output is a little bit more involved. There are two
file formats generated by the tool.

• Subgraph file: Indicates the nodes in which secret information was propagated,
from the declaration to a branch.

• ASCII file: indicates the lines in the code that propagate sensitive information to a
branch or array index. These can be used by the programmer to detect and fix the
vulnerability.

Table 1 below shows the main advantages and limitations of each tool.

Table 1. Comparison of different tools for analyzing constant-time behavior.
Tool name Type Limitations Advantages
dudect Dynamic Cannot prove that an imple-

mentation is constant time.
Takes a long time to run for
covering a large portion of
inputs.

Usability and detection of
microarchitecture effects.

ctgrind Dynamic Cannot prove that an imple-
mentation is constant time
or test all possible inputs.

Usability (reasonably easy
to set up and run).

ct-verif Static Preliminary and under de-
velopment.

Provides formal constant-
time guarantees at high
level, but does not detect
microarchitecture effects.

FlowTracker Static Cannot check all dependen-
cies automatically or detect
microarchitecture effects.

High efficiency and cover-
age of all possible inputs
through evidence collected
from information flow anal-
ysis.



3. Benchmarking database

In this section, we describe how our benchmarking database was constructed, by starting
from the annotation process. Because each dynamic or static tool has specific characteris-
tics, they also require a representation file containing a compilation of the main properties
that the user must give in order to perform the analysis. Given that most of information
from these files is the same and can be shared among different tools, such as name of
the function, parameters and some others, we decided to create a standard XML file to
be used by different tools. With this general file, the user can easily analyze the code
being written by various tools, expanding the verification and therefore being able to find
a larger number of vulnerabilities. Another advantage of this representation is that the
user can create this file once and use several times in different tools by just changing a
few tags, facilitating the automation of the verification process and detection of potential
regressions due to changes in the code or compiling toolchain.

The XML created to describe an implementations consists of a main tag represent-
ing each function to be tested (tag function), including the name and all parameters,
separated in two sections: public and secret. Also, the user can use a special tag
return to determine if the return from a given function must be treated as a secret by
assigning the tag to true. Just like any XML file, the user can use comments to specify the
meaning of each parameter received by the function. For illustration purposes, the XML
file below refers to the representation of Algorithm 1 presented in Section 1.

The FlowTracker static analysis tool was already to designed to receive an in-
put XML with annotations in a similar format, although less usable. Some illustrative
examples can be found in the project website1. The FlowTracker format required the pro-
grammer to refer to sensitive parameters only by using their number in the prototype list
of arguments. We performed all the necessary modifications to adapt FlowTracker parsing
in order to integrate the new representation file with the tool. The entire benchmarking
database is publicly available on GitHub2.

1 <functions>
2 <sources>
3

4 <function>
5 <name>compVar</name> <!--Function to be analyzed-->
6 <return>false</return> <!--Return value is not critical-->
7 <public>
8 <parameter>in</parameter> <!--Input String-->
9 </public>

10 <secret>
11 <parameter>pw</parameter> <!--Password-->
12 </secret>
13 </function>
14

15 </sources>
16 </functions>

Listing 3. XML file used to annotate code in Listing 1.

1http://cuda.dcc.ufmg.br/flowtracker/example.html
2CTBench - https://github.com/arthurlopes/ctbench



Table 2. List of algorithms in our benchmarking database, containing implemen-
tations from the BearSSL and NaCl cryptographic libraries and examples from
the dudect dynamic analysis tool.

Library
Algorithm
Category Constant Variant

BearSSL

Symmetric 18 4
MAC 1 2
Hash 3 5
RSA 3 4
ECC 0 4

dudect
examples

AES 1 1
ECC 1 1

Others 1 1

NaCl

Authenticated
encryption 6 0

Hash 4 0
Curve25519 1 0

Another contribution proposed by this paper was the creation of a benchmarking
database containing several cryptograpihc functions used to analyze the tools. To create
such a database we used implementations from the cryptographic libraries BearSSL3,
NaCl4 [Bernstein et al. 2012] and examples provided by the dudect tool. In total the
database has about 60 implementations detailed in Table 2 below.

More precisely, the database contains three libraries, the first one is the dudect
examples, consisting of two AES implementations, two comparison algorithms and two
Elliptic Curve Cryptography (ECC) implementations. The second one, BearSSL, contains
about twenty implementations of the AES and four of the DES block ciphers. Regard-
ing hash functions, there are implementations of both MD5 and SHA. There are also
three implementations of Message Authentication Codes (MAC) and a few of ECC al-
gorithms. The last library is NaCl, containing six algorithms related to Authenticated
encryption, two hash implementations (SHA256 and SHA512) and one implementation
of scalar multiplication in a specific prime curve (Curve25519) [Bernstein 2006].

The groundtruth classification in constant or variable-time implementation was
obtained through the official documentation of each project. To complete the database,
all representation files used by the FlowTracker, as well as every C source file required by
dudect were created in order to run the tools correctly.

4. Experimental results

The results were obtained by evaluating the static and dynamic verification tools across
our entire benchmarking database.

We started by analyzing the database and rating each implementation as constant
or variable time with the static tool FlowTracker. After the static analysis was finished we

3BearSSL - A smaller SSL/TLS library - https://www.bearssl.org
4NaCl: Networking and Cryptography library - https://nacl.cr.yp.to



moved to the dynamic approach.

Next, the dudect tool was used to check all implementations classified as constant
time by FlowTracker, which as expected produced the output probably constant-time im-
plementation, since every sample taken had the same mean, producing an inconclusive
result. To obtain a reliable result we executed most implementation about ten million
times. For some implementations that required more time to run this value was reduced
to five million or increased to twenty million, always running for at least fifteen minutes.

Only one implementation showed different behaviour due to an insecure function
used (memcmp with early-abort comparison). FlowTracker classified this implementation
as constant because it did not analyze the code for this function, but fortunately dudect
detected the vulnerability. This implementation is a comparison function from the dudect
examples, the variant cmpmemcmp using memcmp() implemented in variable time.

After using the dudect to check all implementations, we executed the same tests
with the ctgrind tool. The original ctgrind patch was adapted to the latest release 3.13
of Valgrind since the GitHub version was created in 2010 and was not compatible with
recent versions. The tools produced equivalent results, an expected outcome given that
both use similar analysis (dynamic).

Finally we studied the behavior of implementations classified as variable time by
FlowTracker. Both dynamic tools were able to find vulnerabilities in every implemen-
tation. For those implementations, FlowTracker was able to provide the corresponding
subgraph indicating where the secret information is being used, along with the affected
branch instructions. The tools dudect was able to find samples with different means and
ctgrind found traces of uninitialized memory being used. Considering all those results we
can conclude that the code indeed does not run in constant time regarding the input and
the tools behave as intended.

5. Conclusions and future work
Given the amount of code analyzed from the libraries, those tools can indeed be used by a
programmer to improve the code and mitigate timing attacks. The usage of those tools is
a recommended practice that can be easily applied by developers to help them create more
secure implementations, avoiding the leakage of sensitive and crucial data. We observed
that a combination of static and dynamic analysis must be used to fully characterize the
timing behavior of a cryptographic implementation, since the binary compiled version
can use insecure functions or instructions that the static analysis is not able to detect.

We plan to extend the benchmarking database to include more libraries and ex-
amples to be used by several tools, analyzing their performance, effectiveness and the
correctness. With a large database we will able to find more examples of implementations
that result in different results when using dynamic and static analysis.

Additionally, we will study how those analysis tools could be integrated to com-
monly used development tools, in order to facilitate the usage by developers who are not
fully aware about side-channels attacks work against insecure implementations. In terms
of usability, our representation format will be extended to include information about ex-
ternal dependencies such that static analysis tools can produce a warning in case a specific
portion of code is not available for analysis.
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